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Electric dipole moments of pendular molecules 

by BRETISLAV FRIEDRICH 
Department of Chemistry, Harvard University, 12 Oxford Street, 

Cambridge, MA 02138, USA 

External electric fields can halt the rotation of polar molecules and produce 
pendular states in which the molecular dipole p is confined to librate over a limited 
angular range about the space-fixed direction of the external field. The pendular 
eigenfunctions are hybrids of field-free rotor states, (J,  K , M )  with indefinite 
(for K # 0) or alternating (for K = 0) parities; this renders the parity of the hybrid 
wavefunctions indefinite for any values of the good quantum numbers K or M. 
As a result, the parity selection rule for the matrix elements of tensor operators in 
the pendular basis, notably the electric dipole moment, is lifted. We give the 
expectation values of the space-fixed dipole moment operator and of the orientation 
cosine of the figure axis and illustrate the lifting with field strength of the parity 
selection rule for prototype hybrid states of polar molecules. The symmetry 
properties of the pendular Hamiltonian are used to sort the eigenstates according 
to the sign of the product of K, M, and p .  

1. Introduction 
Current work with spatially oriented molecular beams has prompted a new wave 

of studies of polar or paramagnetic molecules in strong external electric and magnetic 
fields. Despite previous analysis (Schlier 1955, von Meyenn 1970), it has been 
recognized (Loesch and Remscheid 1990, Friedrich and Herschbach 1991a) and 
demonstrated (Loesch and Remscheid 1990, Friedrich and Herschbach 1991 b, 
Block et al. 1992, Rost et al. 1992) only recently that strong uniform electric fields can 
be used to hybridize low rotational states of polar molecules. The hybridization results 
in pendular states in which the molecular axis is confined to librate over a limited 
angular range about the field direction. The directional pendular states comprise 
coherent superpositions of rotational states IJ, K, M) with a range of J values but fixed 
values of the good quantum numbers K and M. The directionality of the hybrids has 
enabled collision experiments probing steric effects (Loesch and Remscheid 1990, 
Friedrich et al. 1992, Loesch and Moller 1992, 1993). It has also found uses in 
spectroscopy to determine molecular parameters (Block et al. 1992, Friedrich et al. 
1994, Slenczka et al. 1994), to provide intermediate states with widely tunable energies 
(Block et al. 1992, Slenczka et al. 1994). and to make accessible transitions that 
otherwise would be forbidden by the field-free selection rules (Block et al. 1992, 
Friedrich et al. 1994, Slenczka et al. 1994). 

When K = 0, the molecule tumbles end-over-end (unless J = 0); states with the same 
value of IMl remain degenerate and the energy shifts depend quadratically on the field 
strength at low fields (second-order Stark effect (Kronig 1926)). The tumbling tends 
to make the space-$xed dipole moment small. This led to a long-held but mistaken 
notion that for K = 0 it was not feasible to orient polar molecules (Ramsey 1956, Brooks 
1976, Bernstein et al. 1987). When K # 0, the molecule precesses rather than tumbles. 
The energy shifts depend on the sign of M and are linear in both M and the field strength 
at low-fields (first-order Stark effect, e.g. Townes and Schawlow (1975)). For 
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114 B. Friedrich 

precessing molecules the dipole moment does not average out, so the molecular axis 
is intrinsically oriented. Thus for the lowest few rotational states with K # 0, molecular 
beams containing essentially a single oriented precessing state IJ, K, M) can be obtained 
by use of inhomogeneous focusing fields (Kramer and Bernstein 1964, Stolte 1991). 

For sufficiently high-fields, however, both K = 0 and K # 0 states become 
hybridized and descend to energies below their field-free levels, thus becoming 
pendular with angular amplitudes smaller than ? 180". The existence of pendular states 
is made possible by non-zero space-fixed electric dipole moments and vice versa. 
However, the expectation values of tensor operators, such as the electric dipole moment, 
are subject to restrictions imposed by the purify selection rule (e.g., Bunker (1973), 
Landau and Lifshitz (1977)) summarized in AppendixA. Since the electric dipole 
moment operator is a true tensor of rank k = 1, equation (A 5 b)  applies which means 
that there can be no space-fixed electric dipole moment in states of definite parity 
(e.g. Davydov (1965)). Does this mean that a molecule in a pure IJ, K, M) state cannot 
have a static dipole moment? And are there any other states in which the expectation 
value of the space-fixed dipole moment is non-zero? In order to answer these questions 
(and save the phenomenon) we examine the inversion properties of polar linear as well 
as symmetric top molecules in external electricfields: We find that the parity of the 
hybrid eigenfunctions is indefinite so that the parity selection rule no longer applies. 
In such a case ( p ~ )  can be non-zero and the molecular axis oriented. We discuss the 
properties of pendular states relevant to their parity and illustrate, using exact 
calculations, the lifting with field strength of the parity selection rule for prototype 
hybrid states. 

In this article, we first define electric dipole moments of pure IJ, K , M )  states and 
give a brief introduction to pendular states and to the problem of parity. Then we 
examine the inversion properties of pendular states and give their space-fixed dipole 
moments. Detailed exact calculations illustrate the mechanism of the relaxation of the 
parity selection rule with field strength. These calculations may also serve as a prototype 
for other situations governed by coherent superpositions of J-states in which similar 
calculations are not feasible. The paper also introduces a sorting scheme of pendular 
states relevant to both their focusing and spectroscopic properties. It identifies an 
octuplet of states arising for given non-zero IKI, [MI, and lpl and gives a survey of their 
interrelations. 

2. Electric dipole moments of pure states IJ,K,M) 
The notion of a space-fixed electric dipole moment of a molecule is usually 

associated with the expectation value (pQ) of the space-fixed component p~ of the dipole 
moment operator in the symmetric top basis, IJ, K, M) (Klemperer et al. 1992, Kroto 
1992) 

(PQ) = (J ,  K,  M/PQ(J,  K, M )  

The IJ, K ,  M) eigenstates correspond to motions in which the total angular momentum 
J has projection K on the figure axis, z, of the molecule and projection M on the 
space-fixed Z-axis; pq, q = 0, ? 1 are the spherical components of the dipole moment 
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Electric dipole moments 115 

operator in the body-fixed frame nyz with expectation values ( p J ,  as endowed by the 
asymmetric charge distribution in a polar molecule (e.g., Zare (1988)). The body-fixed 
components pq are related to the spherical components pa, Q = 0, i- I ,  in the 
space-fixed frame XYZ by the rotation 

+ I  

pQ = c Dgq(V9 6, X)pqLqr ( 2 )  
q =  - 1  

where the Wigner matrices, DL.q, are parametrized by the Euler angles cp, 8, x (e.g., Zare 
(1988)). From the properties of the 3-Jsymbols we see that (pa) is non-zero only if J > 0 
and Q = q = 0. The latter condition implies that the non-zero body-fixed component of 
the dipole moment operator is along the z-axis (figure axis) of the molecule and the 
non-zero space-fixed component of the dipole moment is along the quantization axis, 
Z; hence 

In the case when K = 0 (pertaining also to a 'C linear molecule), or M = 0, the 3-5 
symbols of ( I )  vanish and, as a result, there is no static (i.e. space-fixed) permanent 
dipole moment. 

A non-zero static dipole moment implies that the body-fixed dipole moment 
(and thus the figure axis of the molecule) is oriented. This is a corollary of ( 2 )  and (3): 
for Q = 4 = 0, we have p~ = pqcos 8 so that the expectation value of the orientation 
cosine, (cos 8), becomes 

Accordingly, a polar ( (pJ  # 0 for q = 0) symmetric top molecule in a pure state 
IJ, K , M )  can have a non-zero expectation value of the static dipole moment (or the 
orientation cosine) only if J > 0 and both M and K # 0. 

3. Pendular Hamiltonian and its eigenproperties 
The Hamiltonian of the polar symmetric top molecule in a homogeneous electric 

( 5 )  
with B the rotational constant about either the x- or y-axis and A the rotational constant 
about the figure axis z (we chose the case of a prolate top, A > B = C, without limiting 
the generality of the argument); the parameter o = p d B  with p = (pq = 0) and E = EQ = o 
measures energies in units of the rotational constant B. 

For given non-zero M ,  K,  and o, the Hamiltonian of ( 5 )  is determined by the 23 
combinations of the signs of M ,  K ,  and o, see Appendix B. Figure 1 illustrates the sign 
combinations for a symmetric top molecule with distinguishable orientation of the 
figure axis, 2, and of the electric dipole moment, designated here by o. The positive 
direction of z is defined as the one from the black end to the white end, the positive 
direction of o as the one from the negative to the positive pole. The space-fixed axis 
Z(as defined by the direction of the electric field E )  is kept constant for all combinations. 
For given non-zero values of IMI, IKI, and 101, there are two different symmetries, each 
specified by the sign of the product o M K .  These comprise two quadruplets with equal 
energies; for one quadruplet the product wMK is positive, for the other negative. 

field EQ directed along the space-fixed Z-axis (Q  = 0) can be written as 

H = [ Jz + (A/B - l)J;] - w cos 6, 
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116 B. Friedrich 

l j, K ,  M ;  -0) J j , - K , M ; o )  I j , - K , - M ; - u )  ~ I , K . - M ; O )  

-K % + w. z 

CZ -M WMK < O  

mMK > O  

Figure 1. Vector model of angular momentum eigenstates due to the pendular Hamiltonian at 
fixed values of j ,  IMI, IKI, and IwI. There are 23 sign combinations of M ,  K, and w for a 
symmetric top molecule with distinguishable orientation of the figure axis, z, and of the 
electric dipole moment, designated here by w. The positive direction of z is defined as 
the one from the black end to the white end, the positive direction of w as the one from 
the negative to the positive pole. The space-fixed axis Z (as defined by the direction of 
the electric field E )  is kept constant for all combinations. The inversion operation is effected 
by replacing 8 by 7c - 8, and K by - K. There are two different symmetries, each specified 
by the sign of the product wMK. These comprise two quadruplets with equal energies; 
for one quadruplet the product wMK is positive, for the other negative. The eigenenergies 
for w M K > O  are lower than those for w M K < O  at all field strengths. Within each 
isoenergetic quadruplet there are two pairs of states that differ in the sign of w and hence 
the sense of figure axis orientation. See also text and Appendix B. 

According to (3) applicable at low 101 in the realm of the first-order Stark effect, we 
see that (pa) > 0 for o > 0 and MK > 0 (i.e. for o M K  > 0 the Stark energy is negative) 
whereas (pg) < 0 for w > 0 and MK < 0 (i.e. for oMK < 0 the Stark energy is positive). 
Since the sign of o M K  remains the same at all field strengths, we conclude that the 
quadruplet with w M K < O  has always higher eigenenergies than the o M K > O  
quadruplet: 

(6)  E ( o M K  > 0 )  S E ( o M K  < 0). 

Within each isoenergetic quadruplet there are two pairs of states that differ in the sign 
of w and hence the sense of figure axis orientation. If either M or K is zero there is just 
one isoenergetic quadruplet of states consisting of two pairs of states differing on the 
sign of o; for M = K = 0 there are just two states differing in the signs of w. This scheme 
is referred to as the 'wMK rule' (Friedrich et al. 1993). In a given electronic state 
the sign of the body-fixed electric dipole moment is fixed, i.e. either UJ > 0 or o < 0. 
This reduces the number of states within a given multiplet by half. The inversion of 
spatial coordinates is effected by replacing 6 by 7~ - 6, K by - K ;  hence the multiplets 
are converted to one another by the inversion operation, see Appendix B. 
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Electric dipole moments 117 

Free Harmonic Harmonic 
Librator 5 ,  M Rotor j, IMI Librator 
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I IKI= 1 I 
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2 

1 

0 0.0-- 
K = O  
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0 

ClhW G O  w-0 W-tW 

Figure 2. Correlation diagram between field-tree rotor states, o + 0, and harmonic librator 
states, o --+ a, for K = 0 (right panel) and 14 = 1 (left panel). 

The field free states, I J ,  K , M ) ,  provide a basis for the series expansion of the 
eigenfunctions of Hamiltonian ( 5 )  

m 

with coefficients ahK (depending solely on the interaction parameter o) that can be 
determined by standard methods with arbitrary accuracy (Schlier 1955, von Meyenn 
1970, Rost et al. 1992). For any fixed values of the good quantum numbers K and M, 
the range of J involved in the coherent superposition or hybrid wavefunction, (7), 
increases with the lo[-parameter. 

The eigenstates are labelled by K and M and the nominal value of 1 of 
the angular momentum for the field-free rotor state that adiabatically correlates 
with the high-field hybrid function. In the field-free limit the (prolate) eigenenergies 
are EjK/B = J(J + 1) + (A/B - 1)K2. In the high-field limit, pendular states 
become harmonic, corresponding to an angular oscillator with eigenenergies 
EJB = - o + ~(20) ' "  + (AIB - 1)K2, where v -= - IM + Kl. Figure 2 summarizes 
these features in terms of correlation diagrams between the field-free rotor states 
( o + O )  and the harmonic angular oscillator (librator) states (m-+ m )  for 14 = 0 
and 1. Note that the correlation diagrams for different 14 > 0 have a similar structure 
except that levels with J S 14 are missing. 

4. Parity of pendular eigenstates 
At vanishing interaction of the molecular dipole with the external field, w -+ 0, the 

wavefunctions become those of a symmetric top: 
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118 B. Friedrich 

The parity operation applied to IJ, K , M )  leads to 

PIJ, K ,  M )  = ( - l )J-K(J ,  - K ,  M )  # p(J ,  K, M ) ,  (9 )  

indicating that the state IJ, K ,  M )  is of indefinite parity if J > 0 and K # 0. Consequently, 
the static dipole moment is not necessarily zero (see similar argument based on the 
notion of double parity of Oka (1973), and an alternative argument based on the notion 
of degeneracy in, e.g., Mandl (1975)): 

However, field-free states with J = 0 or J > 0 and K = 0 do have definite parity, e.g. 

( 1 1 )  

and therefore in these states the polar molecules cannot have non-zero static electric 
dipole moments or exhibit figure axis orientation. 

In the presence of an electric field the potential, - w cos 6, hybridizes the field-free 
rotor states (for any value of s, K or M), giving rise to pendular states with 
wavefunctions given by (7). The pendular Hamiltonian (5) is not invariant under 
inversion of spatial coordinates (for a fixed direction of the external field), and its 
wavefunctions are of indejinite parity, being comprised either of states with indefinite 
parity (for K # 0) or with alternating parities (for K = 0),  

PIJ, 0, M )  = ( - l)”J, 0, M )  = plJ, 0, M ) ,  

Pl j ,  K ,  M ;  w )  = P akdw)lJ, K,  M )  = 2 u & ~ w ) P ~ J ,  K ,  M )  
J J 

5. Electric dipole moments of pendular states Ij9K9M; o) 
In consequence of (12), polar molecules in pendular states can have non-zero static 

dipole moments, without restrictions imposed by the parity selection rule. Moreover, 
the expectation value ( p ~ )  of the space-fixed component ,UQ of the dipole moment 
operator in a pendular state, 13, K ,  M; w), is given by 
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Electric dipole moments 119 

indicating that this can be non-zero even if I ,  M ,  K are all zero. For Q = q = 0, 
pQ = pq cos 8 we have 

which means that the figure axis of molecules in  pendular states is always oriented. 
Lifting of the restriction of type (A 5 b) on the matrix elements of the dipole moment, 

(12), can be demonstrated by evaluating explicitly the matrix element of the inverted 
dipole moment; this yields 

(I ,  K ,  M ,  wlPtp~pl j ,  K ,  M ;  0) 
m + I  

= C ( -  1)/-J'-2K J %. - &)a;, - do) 
J , J ' = O  9 =  - 1 

m + I  

in agreement with 

f o r k =  1. 

6. Discussion 
Figure 3 illustrates the dependence on 101 of energy levels, for all states with the 

nominal j =  1. These involve (2?+ I)' = 9 states, only 3(5+ 2 = 5 of which are 
non-degenerate. For the K = 0 case, states with the same value of IMI are degenerate 
and the Stark shifts are quadratic in 101 at low-field. For the IK( = 1 case, the shifts 
depend on the sign of M and are linear in both M and IMI at low-field. For sufficiently 
high-fields all states descend to energies far below their field-free levels, thus becoming 
pendular. The angular amplitudes become smaller than t 180" when EjK&Io1)/B < lo1 
and decrease to less than & 90" when EjwIB < 0. The eigenenergies of pendular states 
vary linearly with 101 but the expectation values of their static dipole moments (and 
orientation cosines) are positive for w > 0 and negative for o < 0. This is illustrated in 
figure 4 that shows the dependence of 101 of the expectation values of the orientation 
cosine for same states as in figure 3. These are conveniently evaluated from 
field-dependence of the energy levels by (e.g., Friedrich and Herschbach (1991a)) 

according to Hellmaw-Feynman theorem. This relation also facilitates identifying the 
permutations of signs among M ,  K, and o that pertain to equivalent or distinct 
orientations, see figure 1. For any given non-zero values of /MI, IKl and lol, reversing 
the sign of the dipole (co +J - o) switches the system to a different level and always 
reverses the sign of (cos e), see also Appendix B. 

The hybridization of rotor states represents the quantum mechanism of creating the 
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120 B. Friedrich 

0 4 8 12 1G 20 
I W I  

Figure 3. Energy levels of a rigid polar syrnmetic top in a uniform electric field, as functions 
of the Stark interaction parameter, 101. Levels shown pertain to nominal 1 = 1 and to either 
K = 0 (dashed curves) or K = 2 1 (full curves). States designated with M and K, the two 
states with J ,  M, K all non-zero are designated in accord with the w M K  mule, see text. 

1.0 , I I I I 1 

0.5 

A a 
g 0.0 
v" 

-0.5 

-1.0 I I I I I I 
0 4 8 12 16 20 

IWI  

Figure 4. Expectation values of the orientation cosine as functions of the interaction parameter 
101, corresponding to states of figure 3. States designated with M. K, and w. Dashed lines 
show the case when K = 0 and the solid lines when K = -C- 1; each of the dashed-dotted 
lines corresponds to two coincident values due to states with either M or K = 0; see also 
previous figure. 
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Electric dipole moments 121 

pendular states. Figure 5 illustrates for the case of the = 1, M = 0, K = 0 state how 
the composition of the hybrid eigenfunction changes with the interaction parameter o. 
The expansion coefficients ahK(o) of (7) are normalized such that the square of each 
gives the fractional contribution of the corresponding field-free wavefunction to the 
pendular hybrid. At o = 0, there is just one contributing free-rotor state, the parent state 
with J = 1, M = 0, K = 0. As the field strength increases, the parent component declines, 
reaches zero and then rises again, as a&, (0) changes sign. However, the contributions 
from other components increase steadily with o: first the isotropic one with J = 0, 
followed by the four-lobed J = 2 and by wavefunctions with higher J. 
At about o = 5 the contributions from J = 0, 1 ,  and 2 become comparable, giving rise 
to a directional wavefunction with positive expectation value of the orientation cosine. 
This feature remains unaltered up to the harmonic librator limit at o + w . 

In order to show the ‘devaluation’ of the nominal inversion factor, ( - 1)jPK, as a 
function of o, we define a quantity 

rn 

njKM(o) = 2 ( -  l ) ’ - ~ ~ u ~ & o ) ~ 2 ,  (18) 

which weighs the inversion factors, ( - K ,  of the (J,’K, M) wave functions in a given 
pendular hybrid by their fractional contributions, luJ,K(o)12; note that 
IIJ&o+O) +( - I ) ’ - K .  Hence (a) can be used to characterize the deviations 
from the nominal inversion factors at arbitrary o and K. Figure 6 shows the 
dependence of 17iM(w) on o for t h e j =  1, M = 0, K = 0 a n d j =  1, M = 1, K = 1 states: 
I7:, , deviates only slowly from the n;, )(o = 0) = + 1 value; this is largely because the 
1, 1 , l  hybrid is dominated, at low o, by the parent wavefunction. The behaviour of the 
1 ,  0,O hybrid is quite different: the wavefunction loses its parity eigenvalue of - 1 very 
quickly as o increases and, at higher o, even changes sign; this is due to the 
contributions from states with even J that dominate the hybrid there. In the high-field 
limit, however, both types of the pendular wavefunction: become strongly hybridized 
so- that the positive and negative contributions to n”,, balance out, resulting in 
ni,,,(o + 00) + 0 at the harmonic librator limit. 

Although the second (and higher)-order Stark effect can create a linear 
superposition of the zero-order (rotational) wavefunctions (Hughes 1947), the resulting 
space-fixed dipole moments for J > 0 were considered to be impractically small. 
This led to a long-held belief that polar molecules with K = 0 cannot be oriented 
(e.g., Ramsey (1956), Brooks ( 1976), Levine and Bernstein (1987)). 

Within the hybridizing field, the hybrid nature of the pendular states would not be 
altered by coupling of J, the angular momentum of the pendulum, with other angular 
momentum vectors. The pendular states comprise coherent superpositions of basis 
states with indefinite or with alternating parities, thus rendering the parity of the 
pendular wavefunctions indefinite. This puts the parity selection rule out of order. 
However, a coupling of the field-free IJ, K , M )  states to other states can result in a 
definite parity of the ensuing total wavefunctions, such as in the case of the Wang 
functions; then the parity selection rule would come into effect and the field-free 
symmetric top states coupled to other modes of motion would lose their static dipole 
moments (Klemperer et al. 1992). 

Although field-free states IJ, K, M) of molecules may exhibit orientation of the figure 
axis, (4), equilibrium ensembles of such molecules are isotropic. A perturbation of the 
equilibrium population can lead to a preference of some of the pure IJ, K ,  M) states and 
thereby give rise to a net anisotropy of the ensemble, as shown by the work of Toennies 

J = O  
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0.001 

0.0001 
0 4 8 12 16 20 

w 

Figure- 5. Change of the com_position of the hybrid eigenfunction, 
IJ, K, M; w )  = &&,Aw)lJ, K, kf), for J = 1, M = 0, K = 0 as a function of the interaction 
parameter o. The expansion coefficients, &,M, are normalized such that the square of each 
gives the fractional contribution of the field-free wavefunction to the pendular hybrid. 
The thick line shows the parent state contribution (J  = l), the thin lines show contributions 
from other J-states. 

1 .o 

0.5 

-1.0 
0 4 8 12 16 20 

0 

Figure 6. Deviation from the nominal inversion factors, ( - 1 )'- ', for the 3 = 1, M = 1 ,  K = 1 
and 3 = 1, M = 0, K = 0 states as a function of w; this is expressed in terms of the quantity 
IZJKM(o) = CJ( - l ) J - K l ~ ~ w ) 1 2  which weighs the inversion factor of each free-rotor state 
in a given hybrid by its fractional contribution. 
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Electric dipole moments 123 

(1962), Beuhler et al. (1966), Brooks (1966), Estler and Zare (1978), Treffers and 
Korving( 1978), Stolte (1982), Mattheus et al. (1986). de Vries etal. (1987), McCaffery 
et al. (1988). However, since any field-free state can become a parent state of a pendular 
state, pendular orientation is not limited to systems out of equilibrium. Consequently, 
the pendular mode of motion can be described by the apparatus of equilibrium quantum 
statistical mechanics. Moreover, the partition function can be approximated analytically 
with high accuracy (Friedrich and Herschbach 1993); this enables calculating 
thermodynamic functions and ensemble averages in closed form at almost arbitrary field 
strengths and temperature. In particular, the treatment yields an expression for the 
polarization, ((cos e)), of an ensemble of weakly-interacting ‘C dipole molecules, 

with a= w/Tand u ( 2 ~ ) ” ~ / r ;  r= kT/B is the reduced temperature. The Langevin- 
Debye formula (Langevin 1905, Debye 1929, Van Vleck 1932), represented by the first 
term of (19), fails at high field strengths and low temperatures, i.e. in the pendular 
orientation domain. In the classic treatment based on the second-order Stark effect, all 
contributions except those from the J = 0, M = 0 states cancel out (Van Vleck 1932). 
In contrast, formula (19) comprises non-zero contributions from all states in the 
ensemble. 

7. Conclusions 
The pendular potential, proportional to the cosine of the angle between the 

body-fixed dipole moment and the direction of an external electric field, hybridizes free 
rotor states of polar symmetric top molecules. The hybrid nature of the ensuing pendular 
states allows these molecules to possess non-zero space-fixed dipole moments. 
The underlying indefinite parity of pendular eigenfunctions is the key to figure-axis 
orientation of individual dipole molecules as well as to polarization of equilibrium 
ensembles. The non-diagonal elements of the space-fixed dipole moment matrix in the 
pendular basis are also generally non-zero, thus making possible dipole transitions 
otherwise forbidden by the parity selection rule. For a given value of body-fixed dipole 
moment and given non-zero values of the good quantum number IKI and /MI, pendular 
states occur in  pairs of isoenergetic doublets related to one another by spatial inversion 
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Appendix A. Summary of the parity selection rule 
The parity operator, P,  reverses (inverts) the sign of the coordinates: 

PfW, Y , z )  =f( - x,  - Y, - z); (A 1) 

(which is equivalent to transfonning a left-handed coordinate system into a 
right-handed one or vice versa). It is a unitary operator, Pt = P- I ,  with the characteristic 
equation 

P f K  y, z )  = PfW, Y,  z )  (A 2) 
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124 B. Friedrich 

and eigenvalues p = f 1 .  Parity is said to be positive for p = + 1 (and designated + ) 
and negative for p = - 1 (and designated - ). 

Parity is expressive of the left-right symmetry of space and is to be distinguished 
from inversion in the body-fixed frame, an operation that only exists for systems with 
a centre of symmetry such as homonuclear diatomics. 

An operatorA that transforms under rotation like a spherical tensor operator of rank 
k and under inversion according to 

PAP' = ( - l)kA (A 3) 

is referred to as a true (polar) tensor operator; the operator has positive or negative 
parity for k even or odd. A spherical tensor operator A that transforms under inversion 
as 

PAPt = - ( - l)kA (A 4) 

is referred to as a pseudo-tensor (axial tensor); it has positive or negative parity for k 
odd or even. For k = 0 the operator can be either a true scalar (with positive parity) 
or a pseudoscalar (with negative parity). 

For the matrix elements of a true tensor operator, A, of rank k connecting states I$ + ) 
or I $ - )  of definite parity we have 

($-,+bl$+,-)=O, forkeven, (A 5 a)  

($ - , + IA I$ - , + ) = 0, (A 5 b) for k odd. 

For the matrix elements of apseudo-tensor operator, A, of rank k connecting states I$ + ) 
or I$ - ) of dejinite parity we have 

($ - , + b/$ - , + ) = 0, 

($ - , + [A\$ + , - ) = 0, 

for k even, 

for k odd. 

(A 6 a> 

(A 6 b) 

This can be proved from the definitions ( A  3) and (A 4) and the unitarity property of 
P. For instance ($- b/$+) = 0 in ( A 5 a )  obtains as follows: ($-IAI$ +) = ( - l ) k  
($- IPtAPl$+) = ( - ($-f"lAlp$ +) = ( - l ) k p - ~ +  ($- C.il$+) = - ($- lAI$ +)  
for k even, which can only be fulfilled if (11, - b1$ + ) = 0 (QED). 

Appendix B. Properties of the pendular Hamiltonian 
For given values of K, M ,  and o the Hamiltonian, (5) ,  can be recast into a form that 

(B 1) 

depends solely on the polar angle 8 (e.g., Friedrich et al. (1993)) 

H = HMRw(e) = HMde) - 0 cos 0, 

where 

H M ( 0 ) = - -  1 ( a  -sin6 ) -+ :6 ( M - K c o s ~ ) ~  - e - 1 ) K 2  (B2) sm8  a0 sin2 e 
is the field-free Hamiltonian for a symmetric top at fixed values of M, K.  It is easily 
seen that 

H M . ( e ) = H - M , - K ( e ) = ~ M , - d 7 C - e ) = H - , , ~ ~ - e ) ,  (B 3) 

and 
- 
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Electric dipole moments 125 

so that the Harniltonians with o M K  > 0, 

HH, K;  w(8) = H - M ,  - K: w(6) = HM. - K: - a(n - 6) = H - M ,  K;  - o(K - 6% (B 5)  

and their eigenvalues form an isoenergetic quadruplet: 

E >  E a ~ ~ =  E w - ~ - ~ =  E - o - ~ ~ =  E - w ~ - ~ .  (B 6) 

By applying the inversion operation to the Hamiltonian (B l), i.e. by replacing K 
by - K and 8 by 7t - 8, we obtain 

PHM, K ; , ( 6 )  = HM, ~ ( 0 )  + o cos 6 HM, K; - w( 8) 

= ff - M ,  - K; - 

Ed E E - a ~ ~ =  E - w - ~ - ~ =  E w - ~ ~ =  E c l , ~ - ~ ,  

(B 7) 

a new Hamiltonian. Using (B 3) and (B 4) we see that 

HM,K; - = HM, - ~ ; d n  - 6) = H -  M, K; w(X - 81, (B 8) 

whose eigenvalues form an isoenergetic quadruplet, 

(B 9) 
with oMK < 0. 

The eigenfunctions with negative and positive o within each quadruplet are oriented 
in the opposite sense to one another. Note that for K = 0, the parity operation can be 
alternatively accomplished by replacing w by - o. The general effect of the latter 
operation, w -+ - w, can be summarized in term of the Fourier coefficients, u J K ~ ( w ) ,  
for either of the quadruplets, 

U J K M ( o )  = aJ - K - M ( O )  

= ( -  l ) J - J a J - K M ( - m ) = ( -  l )”’aJK-M(-W),  (B 10) 

for wMK > 0, and 

U J  - K M ( ~ )  = ~ J K  - Mia) 
= ( - 1 )’-JaJKM( - 0) =z ( - ~ JaJ - K - M( - a), (B 11) 

for wMK -=c 0. For K = 0 we see that indeed the reversal of sign of o amounts to a 
transition between states given by the Fourier coefficients of (B 10) and (B 11) 
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